Modern Dating Methods
 By Paul Nethercott
 April 2014

Introduction

How reliable is radiometric dating? We are repeatedly told that it proves the Earth to be billions of years old. If radiometric dating is reliable than it should not contradict the evolutionary model. According to the Big Bang theory the age of the Universe is 10 to 15 billion years. ${ }^{1}$ Standard evolutionist publications give the age of the universe as 13.75 Billion years. ${ }^{2,3}$

Standard evolutionist geology views the Earth as being 4.5 billion years old. Here are some quotes from popular text: "The age of the Earth is 4.54 ± 0.05 billion years." "The Solar System, formed between 4.53 and 4.58 billion years ago." "The age of 4.54 billion years found for the Solar System and Earth." "A valid age for the Earth of 4.55 billion years." ${ }^{5,6}$

Evolutionists give the age of the galaxy as " 11 to 13 billion years for the age of the Milky Way Galaxy." ${ }^{1,7}$ Let us remember this as we look at the following dating as given in secular science journals.

Post-Collisional Transition from Subduction

These rocks from south western Spain and Morocco were dated in 2003 by scientist from the Institute for Geosciences, University Of Kiel, Germany using the $40 \mathrm{Ar} / 39 \mathrm{Ar}$-age dating. ${ }^{8}$ According to the article The true age of the rock formation is between 0.65 million years and 8 million years old: "Two groups of magmatic rocks can be distinguished: (1) an Upper Miocene to Lower Pliocene (8.2-4.8 Ma), Si-K-rich group including high-K (calc-alkaline) and shoshonitic series rocks; (2) an Upper Miocene to Pleistocene (6.3-0.65 Ma)." ${ }^{9}$ The article contains tables ${ }^{10}$ with Uranium/Thorium/Lead ratios that have no dates beside them. If we put the tables into Microsoft Excel and use the computer program Isoplot ${ }^{11}$ we can calculate dates from the undated isotopic ratios. There is a 48,068 million year range between the youngest and oldest dates.

Table 1	207Pb/206Pb	208Pb/232Th	206Pb238U
Average	4,951	13,783	3,440
Maximum	4,986	48,962	7,519
Minimum	4,837	2,028	$\mathbf{8 9 4}$

Nazca Ridge and Easter Seamount Chain

These rocks from Easter Island sea floor were dated in 2011 by scientist from the University Of Hawaii using the $40 \mathrm{Ar} / 39 \mathrm{Ar}$-age dating. ${ }^{12}$ According to the article the true age of the rock formation is between 1 million years and 33 million years old. ${ }^{13}$ The article contains a table ${ }^{14}$ with Uranium/Thorium/Lead ratios that have no dates beside them. If we put the tables into Microsoft Excel and use the computer program Isoplot, we can calculate dates from the undated isotopic ratios. There is a 22,684 million year range between the youngest and oldest dates.

Table 2	$207 \mathrm{~Pb} / 206 \mathrm{~Pb}$	$208 \mathrm{~Pb} / 232 \mathrm{Th}$	$206 \mathrm{~Pb} / 238 \mathrm{U}$
Average	4,919	$\mathbf{8 , 3 2 5}$	3,694
Maximum	4,971	23,850	$\mathbf{9 , 6 4 5}$
Minimum	4,881	$\mathbf{4 , 1 2 9}$	$\mathbf{1 , 1 6 6}$

South African Off-Craton Mantle

These rocks from South Africa were dated in 2009 by scientist from the Arizona State University using the Rhenium/Osmium age dating. ${ }^{15}$ According to the article the true age of the rock formation is between 600 million years and 2,600 million years old. "Rhenium depletion model ages (TRD) determined from 58 Osmium isotope compositions of peridotites span a range from 2.6 to 0.6 Ga , with an average of 1.67 Ga ." ${ }^{15}$ The article contains a table ${ }^{16}$ with calculated dates beside them. Out of the 144 dates there is a 121.35 billion year range between the youngest [-76 billion years] and oldest [45 billion years] dates. The oldest sample is thirty billion years older than the Big Bang explosion.

Largest	Largest	Smallest	Smallest
(Ga)	(Ga)	(Ga)	(Ga)
45.05	6.98	-0.14	-6.1
34.97	6.71	-1.54	-10.7
27.29	6.59	-1.62	-13.38
10.39	5.6	-4.44	-14.57
10.21	5.55	-4.48	-33.78
8.31	5.39	-5.91	-76.3

Os And Re Distribution In The Active Mound

These rocks from Mid-Atlantic Ridge were dated in 1998 by scientist from Texas AM University using the Rhenium/Osmium age dating. ${ }^{17}$ The article contains a table ${ }^{18}$ that has Osmium 187/186 ratios that have no dates beside them. If we put the tables into Microsoft Excel and use the formula below used in standard geology text books ${ }^{19-21}$ we can calculate dates from the undated isotopic ratios.
(1)

$$
t=\frac{1.04-\left({ }^{187} \mathrm{Os} /{ }^{186} \mathrm{Os}\right)}{0.050768}
$$

In the above formula, $t=$ billions of years. The same date can be calculated from the Osmium 187/188 ratios. If we use another formula ${ }^{22}$ we can convert the Osmium 187/188 ratio to the Osmium 187/186 ratio.
(2)

$$
\frac{\frac{{ }^{187} \mathrm{Os}}{{ }^{186} \mathrm{Os}} \times 0.12035=\frac{{ }^{187} \mathrm{Os}}{{ }^{188} \mathrm{Os}}}{}
$$

(3)

$$
\frac{{ }^{\frac{187}{} \mathrm{Os}} \mathrm{Os}}{{ }^{186}}=\frac{\left({ }^{187} O s \div{ }^{188} \mathrm{Os}\right)}{0.12035}
$$

(4)

$$
t=\frac{1.04-\left(\frac{\left({ }^{187} O s \div{ }^{188} O s\right)}{0.12035}\right)}{0.050768}
$$

Table 4	Million Years
Average	$-123,544$
Maximum	$-13,394$
Minimum	$-154,625$

The Osmium ratios yield impossible future ages. How can the rocks that formed in the past have formed 154 billion years in the future?

Osmium-Isotope Geochemistry Of Site 959

These rocks from South Africa were dated in 1998 by scientist from the Woods Hole Oceanographic Institution, Massachusetts using the Rhenium/Osmium age dating. ${ }^{23}$ According to the article the true age of the rock formation is between 66 million years and 2 million years old. "These samples vary in age from late Neogene to Late Cretaceous." ${ }^{23}$ The article contains a table ${ }^{24}$ with Osmium 187/186 ratios that have no dates beside them. Out of the 19 dates there is a 246 billion year range between the youngest and oldest dates.

Table 5	Million Years
Average	$-153,703$
Maximum	$-72,290$
Minimum	$-318,311$

The Seve Nappe Complex of Jamtland

These rocks from Sweden were dated in 2002 by scientist from Queens College, New York using the Rhenium/Osmium and Neodymium/Samarium age dating. ${ }^{25}$ According to the article the true age of the rock formation is 450 million years old: "Mineral isochrons from three pyroxenite layers define overlapping ages of 452.1 and 448 Ma and $451 \mathrm{Ma} .{ }^{25}$ The article contains a table ${ }^{26}$ with Osmium 187/186 ratios that have no dates beside them. Out of the forty dates there is a 41.71 billion year range between the youngest and oldest dates. Of the forty dates, twenty eight [70\%] are over 5 billion years old. Fifteen [37.5\%] are over 10 billion years old.

Table 6	Million Years	\% Discordance	Difference
Average	$-10,204$	2,381	10,715
Maximum	1,205	9,201	41,406
Minimum	$-40,956$	170	767

The same table has calculated Rhenium/Osmium dates beside the undated ratios. Out of the 79 dates there is a 92 billion year range between the youngest and oldest dates. Of the 79 dates, twenty eight [70\%] are over 5 billion years old. Fifteen [37.5\%] are over 10 billion years old. Out of the 79 dates twenty [25%] are over 5 billion years old. Nine [11\%] are over 11 billion years old. Forty nine [62\%] are impossible future or negative ages. The oldest sample is twenty billion years older than the Big Bang explosion.

Table 7	Ga
Average	-4.25
Maximum	34
Minimum	-58

The Kaalvallei Kimberlite, South Africa

These rocks from South Africa were dated in 2004 by scientist from University Of Toronto, Canada using the Rubidium/Strontium and Neodymium/Samarium age dating. ${ }^{27}$ According to the article the true age of the rock formation is between 990 to 1580 million years old: "All indicate Proterozoic diamond formation ages ranging from 990 to 1580 Ma , and it is, therefore, not unreasonable to assume that the Kaalvallei Group I eclogite xenoliths are also at least Proterozoic in age." ${ }^{28}$ The article contains a table ${ }^{28}$ with Neodymium/Samarium dates beside them. There is a 5.4 billion year range between the youngest and oldest dates.

Minimum Age	Maximum Age	Age Difference
Million Years	Million Years	Million Years
-5	-	
-697	1304	2,001
$-2,771$	1572	4,343
$-3,817$	1148	4,965
$-3,896$	1304	5,200
$-4,198$	1199	5,397

Genesis of Continental Intraplate Basalts

These rocks from western Victoria were dated in 2000 by scientist from Monash University, Melbourne using the Lead/Lead, Rhenium/Osmium and Neodymium/Samarium age dating. ${ }^{29}$ According to the article the true age of the rock formation is between 750 and 1,000 million years old: "The best fit AFC model for the group two oltholeiites is for assimilation with $1,000 \mathrm{Ma}$ low $187 \mathrm{Re} / 188 \mathrm{Os} .{ }^{30}$ The basalt veneer is a 10 metre deep layer. "Contamination of the Newer Volocanics Province Plains series magmas by Proterozoic crustal [$>750 \mathrm{Ma}$] is considered to be more likely." ${ }^{30}$ The article contains a table ${ }^{31}$ with Osmium 187/188 and Lead 207/206 ratios that have no dates beside them. Out of the dates we calculated from these ratios there is a 57.45 billion year range between the youngest and oldest dates.

Pb 207/206	187Os/1880s	Age	Age
Age	Age	\% Difference	Difference
4,979	$-1,900$	262	6,878
4,985	$-1,484$	336	6,469
4,986	$-20,890$	419	25,875
4,981	$-23,099$	464	28,081
4,984	$-52,445$	1,052	57,429
4,974	$-39,136$	787	44,109
4,975	$-19,630$	395	24,605
4,986	$-9,132$	183	14,118
5,007	$-12,919$	258	17,926

Xenoliths from the Colorado Plateau

These rocks from North eastern Arizona (Four corners: Utah, Colorado, Arizona, New Mexico), were dated in 2004 by scientist from Okayama University, Japan using the Uranium/Lead, Rubidium/Strontium and Neodymium/Samarium age dating. ${ }^{32}$ The formation is supposed to have formed in the Cretaceous period: "The Late Cretaceous and Tertiary records of arc magmatism in the south western USA constrain the slab geometry and its evolution, suggesting that the migration of arc magmatism was probably caused by progressive flattening of a subducting slab." ${ }^{33}$ The true age of the rock formation is supposed to be between 30 and 80 million years old: "Usui et al. (2003) used ion microprobe techniques to determine the $\mathrm{U}-\mathrm{Pb}$ ages of zircons from the Colorado Plateau eclogite xenoliths, which yielded concordant ages from 81 to 33 Ma ." ${ }^{34}$ "The mineral isochron ages for

Modern Dating Methods

zoisite-eclogite xenoliths are 39 Ma for the $147 \mathrm{Sm} / 144 \mathrm{Nd}-143 \mathrm{Nd} / 144 \mathrm{Nd}$ isochron diagram, and $33-20 \mathrm{Ma}$ for the $238 \mathrm{U} / 206 \mathrm{~Pb}-207 \mathrm{~Pb} / 206 \mathrm{~Pb}$ isochron diagram." ${ }^{35}$ The article contains a table ${ }^{36}$ with Uranium/Thorium/Lead ratios that have no dates beside them. Out of the dates we calculated from these ratios there is a 39.9 billion year range between the youngest [653 million years] and oldest [40,568 million years] dates.

Table 10	Average	Maximum	Minimum
$207 \mathrm{~Pb} / 206 \mathrm{~Pb}$	4,938	4,963	4,881
$206 \mathrm{~Pb} / 238 \mathrm{U}$	3,548	5,716	653
$207 \mathrm{~Pb} / 235 \mathrm{U}$	4,303	5,169	2,560
$208 \mathrm{~Pb} / 232 \mathrm{Th}$	10,765	18,206	1,806

Table 11	Average	Maximum	Minimum
$207 \mathrm{~Pb} / 206 \mathrm{~Pb}$	4,956	4,961	4,949
$206 \mathrm{~Pb} / 238 \mathrm{U}$	6,799	10,481	1,894
$207 \mathrm{~Pb} / 235 \mathrm{U}$	5,303	6,231	3,732
$208 \mathrm{~Pb} / 232 \mathrm{Th}$	15,131	40,568	1,704

Table 12	Average	Maximum	Minimum
$207 \mathrm{~Pb} / 206 \mathrm{~Pb}$	4,961	4,965	4,958
$206 \mathrm{~Pb} / 238 \mathrm{U}$	8,861	10,383	6,938
$207 \mathrm{~Pb} / 235 \mathrm{U}$	5,893	6,218	5,476
$208 \mathrm{~Pb} / 232 \mathrm{Th}$	14,675	16,757	11,144

Indosinian Granitoids

These rocks from The Bikou block, located along the north western margin of the Yangtze plate, were dated in 2006 by scientist from the China University of Geosciences, Wuhan, China using the Uranium/Lead, Rubidium/Strontium and Neodymium/Samarium age dating. The true age of the rock formation is supposed to be 200 to 800 million years old: "U-Pb zircon SHRIMP dating for the volcanic rocks yielded ages ranging from 840 to 776 Ma , representing formation time of the Bikou Group volcanic rocks." "The magma crystallization age of the Yangba pluton was reported to be $215.4 \pm 8.3 \mathrm{Ma}$ ($\mathrm{U}-\mathrm{Pb}$ zircon)" ${ }^{39}$ The article contains a table ${ }^{40}$ with Uranium/Thorium/Lead ratios that have no dates beside them. Out of the dates we calculated from these ratios there is a 26.8 billion year range between the youngest [5,005 million years] and oldest [31,891 million years] dates.

Table 13	$207 \mathrm{~Pb} / 206 \mathrm{~Pb}$	$206 \mathrm{~Pb} / 238 \mathrm{U}$	$208 \mathrm{~Pb} / 232 \mathrm{Th}$
Average	5,017	11,096	21,167
Maximum	5,028	13,173	31,891
Minimum	5,005	7,695	12,943

The Stonyford Volcanic Complex

These rocks from The San Andreas fault (San Francisco; Sacramento Valley) were dated in 2004 by scientist from the Utah State University ${ }^{41}$ using the Uranium/Lead, Rubidium/Strontium and Neodymium/Samarium age dating. The true age of the rock formation is supposed to be 160 million years old: "Jurassic age volcanic rocks of the Stonyford volcanic complex (SFVC) comprise three distinct petrological groups." ${ }^{42}$ " $40 \mathrm{Ar}-39 \mathrm{Ar}$ dates on volcanic glass from the hyaloclastite breccias range from 163 to 164 Ma ." 43 "Quartz diorite melange blocks that structurally underlie the SFVC yield U-Pb zircon concordia intercept ages of 163 Ma and $164 \mathrm{Ma} .{ }^{43}$ The article contains a table ${ }^{44}$ with Lead 207/206 ratios that have no dates beside them. Out of the fourteen dates we calculated from these ratios there is an agreement that the true age of the rock formation is not 160 million years but actually 5 billion years old!

Table 14	$207 \mathrm{~Pb} / 206 \mathrm{~Pb}$
Average	4,952
Maximum	$\mathbf{5 , 0 1 2}$
Minimum	$\mathbf{4 , 8 3 1}$

Cenozoic Volcanism in Tibet

These rocks from Tibet were dated in 2002 by scientist from the University Of Arizona using the Uranium/Lead, Rubidium/Strontium and Neodymium/Samarium age dating. The rocks were also dated by two other methods $(\mathrm{K} / \mathrm{Ar}$ or $40 \mathrm{Ar} / 39 \mathrm{Ar}) .{ }^{45}$ The true age of the rock formation is supposed to be 10 to 60 million years old. "Chemical data are presented for newly discovered Cenozoic volcanic rocks in the western Qiangtang and central Lhasa terranes of Tibet. Alkali basalts of $65-45 \mathrm{Ma}$ occur in the western Qiangtang terrane." 46 "In contrast, younger volcanic rocks in the western Qiangtang terrane (30 Ma) and the central Lhasa terrane (23,13 and 8 Ma) are potassic to ultrapotassic and interpreted to have been derived from an enriched mantle source." ${ }^{46}$ The article contains a table ${ }^{47} 40 \mathrm{Ar} / 39 \mathrm{Ar}$ ratios that have fifty four dates beside them. The article contains another table ${ }^{48}$ that has thirty three Lead 207/206 ratios and fifteen Rubidium/Strontium ratios that have no dates beside them. Out of the forty eight dates we calculated from these ratios there is an agreement that the true age of the rock formation is not 60 million years but actually 5 billion years old! Whichever date you choose as the true one is just a random guess.

Table 15	$207 \mathrm{~Pb} / 206 \mathrm{~Pb}$	Ar/Ar	87Rb/86Sr
Average	4,980	2.74	25
Maximum	5,014	33.50	43
Minimum	4,968	0.28	13

U-Th-Pb Analysis Of Baddeleyites

These Martian meteorites were dated in 2011 by scientist from the University Of Arizona using the Lead/Lead, Rubidium/Strontium and Neodymium/Samarium age dating. ${ }^{49}$ The true age of the rock formation is supposed to be between 150 and 4,005 million years old. " $\mathrm{Rb}-\mathrm{Sr}$ and $\mathrm{Sm}-\mathrm{Nd}$ ages of basaltic shergottites consistently yield young ages ($150-450 \mathrm{Ma}$). Other shergottite sub-groups also yield young ages. In contrast to these results, $\mathrm{Pb}-\mathrm{Pb}$ isochron analyses yields ages on order of $4.05 \mathrm{Ga} .{ }^{49}$ Such a wide age range is meaningless! The article contains a table ${ }^{49}$ that has nine Uranium/Lead ratios from two different meteorites that have no dates beside them. Out of the nine dates we calculated from these ratios there is a total disagreement with the so called 'true age.' Whichever date you choose for each meteorite as the true one is just a random guess.

Meteorite	$206 \mathrm{~Pb} / 207 \mathrm{~Pb}$	$207 \mathrm{~Pb} / 235 \mathrm{U}$	$206 \mathrm{~Pb} / 238 \mathrm{U}$	Model Age	Error
NWA 2986	4,149	2,304	810	502	3,647
NWA 2986	4,155	3,251	1,994	1236	2,919
NWA 2986	5,199	3,644	1,501	931	4,268
NWA 2986	2,460	1,170	602	373	2,087
NWA 2986	4,022	1,368	302	187	3,835
RBT 04262	2,639	436	139	100	2,539
RBT 04262	3,956	1,485	365	263	3,693
RBT 04262	4,540	2,448	731	526	4,014
RBT 04262	4,108	1,700	429	309	3,799

Rb-Sr and $\mathrm{Pb}-\mathrm{Pb}$ Geochronology

These rock samples from the alpine towns of Verbania and Locarno on the Swiss/Italian border were dated in 2007 by scientist from the University Of Milan in Italy using the Uranium/Lead, Rubidium/Strontium age dating. ${ }^{50}$ The true age of the rock formation is supposed to between 300 and 405 million years old. " $\mathrm{Rb}-\mathrm{Sr}$ whole-rock
(WR) isochron ($466 \pm 5 \mathrm{Ma}$) and $\mathrm{Pb}-\mathrm{Pb}$ single zircon evaporation ages ($458 \pm 6 \mathrm{Ma}$ and $463 \pm 4 \mathrm{Ma}$) on meta-granites date the emplacement of the older intrusive series, whereas Rb -Sr muscovite ages ($311-325 \mathrm{Ma}$) approach the Carboniferous metamorphism ($331-340 \mathrm{Ma}$). Rb - Sr WR isochrons ($277 \pm 8 \mathrm{Ma}$) and biotite ages ($276-281 \mathrm{Ma}$) on granitic plutons date the emplacement of the younger intrusive series." ${ }^{50}$ The article contains a table ${ }^{51}$ that has sixty five Lead 207/206 ratios that have no dates beside them. Out of the sixty five dates we calculated from these ratios there is a total disagreement with the so called 'true age.' Whichever date you choose for each sample as the true one is just a random guess.

Table 17	207Pb/206Pb
Average	4,992
Maximum	5,237
Minimum	4,924

$\underline{\mathbf{U}-\mathbf{T h}-\mathbf{P b} \text { Isotope Data }}$

These rock samples from the Marble Bar area of the Pilbara Craton (Western Australia) were dated in 2011 by scientist from the University of Wisconsin-Madison using the Uranium/Lead age dating. ${ }^{52}$ The true age of the rock formation is supposed to be 3,400 million years old. "The first core of the Archean Biosphere Drilling Project (ABDP-1) documented hematite as alteration products in 3.4 Ga basalts from the Marble Bar area of the Pilbara Craton, NW Australia." 53 "The best-fitting isochrons for the basalts from Marble Bar at 3.4 Ga , which is the approximate formation age of these basalts. Secondary Pb growth curves were made using the Pb isotope composition of the primary Pb growth curve at 3.4 Ga as the starting point." ${ }^{54} \mathrm{The}$ article contains a table ${ }^{55}$ that has thirteen Uranium/Thorium/Lead ratios that have no dates beside them. Out of the thirteen dates we calculated from these ratios there is a total disagreement with the so called 'true age.' There is a 95 billion year difference between the youngest and oldest dates. Whichever date you choose for the true one is just a random guess.

Table 18	$206 \mathrm{~Pb} / 238 \mathrm{U}$	$207 \mathrm{~Pb} / 235 \mathrm{U}$	$207 \mathrm{~Pb} / 206 \mathrm{~Pb}$	$208 \mathrm{~Pb} / 232 \mathrm{Th}$
Average	15,192	7,319	5,325	56,976
Maximum	31,005	10,054	5,403	100,601
Minimum	7,138	5,795	5,222	24,980

GSA Data Repository

These rock samples from the Guyot Province and the Walvis Bay Ridge, Namibia were dated in 2013 by scientist from the Geological Society of America using the Uranium/Thorium/Lead age dating. ${ }^{56}$ The true age of the rock formation is supposed to be 100 million years old. "The samples display an age range of $\sim 100 \mathrm{Ma}$ and are thus difficult to compare at a common age without making additional assumptions, such as parent/daughter ratios of the source." ${ }^{57}$ The article contains a table ${ }^{58}$ that has different isotopic ratios that have no dates beside them. Out of the one hundred and twelve dates we calculated from these ratios there is a total disagreement with the so called 'true age.' The sixty four Uranium/Lead dates totally contradict the forty eight $\mathrm{Rb} / \mathrm{Sr}, \mathrm{Nd} / \mathrm{Sm}$ dates. Whichever date you choose for each sample as the true one is just a random guess.

Table 19	Average	Maximum	Minimum
$207 \mathrm{~Pb} / 206 \mathrm{~Pb}$	4,996	5,015	4,981
$207 \mathrm{~Pb} / 235 \mathrm{U}$	4,760	5,033	4,599
$208 \mathrm{~Pb} / 232 \mathrm{Th}$	7,484	8,770	7,097
$206 \mathrm{~Pb} / 238 \mathrm{U}$	4,243	4,929	3,711

Table 20	Average	Maximum	Minimum
$207 \mathrm{~Pb} / 206 \mathrm{~Pb}$	5,019	5,044	5,008
$207 \mathrm{~Pb} / 235 \mathrm{U}$	5,167	5,493	4,948
$208 \mathrm{~Pb} / 232 \mathrm{Th}$	8,727	9,496	7,516
$206 \mathrm{~Pb} / 238 \mathrm{U}$	5,514	6,675	4,782

Table 21	Average	Maximum	Minimum
$207 \mathrm{~Pb} / 206 \mathrm{~Pb}$	5,012	5,022	5,005
$207 \mathrm{~Pb} / 235 \mathrm{U}$	4,726	5,038	4,340
$208 \mathrm{~Pb} / 232 \mathrm{Th}$	7,571	$\mathbf{8 , 8 2 1}$	6,211
$206 \mathrm{~Pb} / 238 \mathrm{U}$	4,115	5,049	3,015

Table 22	Average	Maximum	Minimum
$207 \mathrm{~Pb} / 206 \mathrm{~Pb}$	5,018	5,029	5,006
$207 \mathrm{~Pb} / 235 \mathrm{U}$	4,765	4,869	4,662
$208 \mathrm{~Pb} / 232 \mathrm{Th}$	10,476	10,553	10,400
$206 \mathrm{~Pb} / 238 \mathrm{U}$	4,179	4,503	3,854

Table 23	87Rb/86Sr	147Sm/144Nd	176Lu/177Hf
Average	49	49	52
Maximum	70	70	65
Minimum	30	30	31

Lead in Galena from Ore Deposits

These rock samples from the Khanka Massif range (north of Vladivostok) were dated in 2002 by scientist from the Russian Academy of Sciences in Irkutsk using the Lead 207/206 age dating. ${ }^{59}$ The true age of the rock formation is supposed to be 100 to 245 million years old. "Lead from galena of the Taukha terrane has a wide range of model ages ($245-109 \mathrm{Ma}$). The range of $109-141$ Ma corresponds to the Early Cretaceous accretion of the Taukha terrane, whereas the range of 157-245 Ma corresponds to the formation of the Early Triassic-Late Jurassic oceanic fragment." ${ }^{60}$ The article contains a table ${ }^{61}$ that has Lead 207/206 ratios that have no dates beside them. Out of the forty three dates we calculated from these ratios there is a total disagreement with the so called 'true age.' Whichever date you choose for each sample as the true one is just a random guess.

Table 24	207Pb/206Pb	Model Age
Average	5,009	156
Maximum	5,063	736
Minimum	5,000	66

The Caribbean Large Igneous Province

These rock samples from the southern Caribbean Sea, off the Venezuelan coast were dated in 1998 by scientist from the University of California using the Lead/Lead, Rubidium/Strontium and Neodymium/Samarium age dating. ${ }^{62}$ The true age of the rock formation is supposed to be 80 million years old. "The uniqueness of the Caribbean Large Igneous Province (CLIP, 92-74 Ma) with respect to other Cretaceous oceanic plateaus is its extensive sub-aerial exposures." ${ }^{63}$ "Nanno fossils and $40 \mathrm{Ar} / 39 \mathrm{Ar}$ ages suggest that the main pulse of volcanism forming the CLIP occurred primarily between 92 and 88 Ma but continued to V74 Ma." ${ }^{64}$ The article contains a table ${ }^{65}$ that has $147 \mathrm{Sm} / 144 \mathrm{Nd}$ and $206 \mathrm{~Pb} / 207 \mathrm{~Pb}$ ratios that have no dates beside them. Out of the thirty three dates we calculated from these ratios there is a total disagreement with the so called 'true age.' Whichever date you choose for each sample as the true one is just a random guess.

Table 25	147Sm/144Nd	206Pb/207Pb
Average	84	4,940
Maximum	91	4,973
Minimum	60	4,895

Nd-Hf-Sr-Pb isotopes

These rock samples from the Krishna River, east of Hyderabad were dated in 2006 by scientist from the University of Rochester, New York using the Neodymium, Strontium, Lead and Hafnium age dating methods. ${ }^{66}$ The true age of the rock formation is supposed to be 1,224 million years old. "The probable sources of some of the famous Indian diamonds are the 1.2 Ga old Krishna lamproites of Southern India, a rare Proterozoic occurrence of lamproites." ${ }^{67}$ "The initial isotopic ratios of these elements are calculated based on the $\sim 1,224 \mathrm{Ma} \mathrm{Rb-Sr}$ age of emplacement for these lamproites." ${ }^{68}$ The article contains a table ${ }^{69}$ that has Rubidium/Strontium and Uranium/Lead ratios that have no dates beside them. Out of the twenty dates we calculated from these ratios there is a total disagreement between the U / Pb with the so called 'true age.' Whichever date you choose for each meteorite as the true one is just a random guess.

Table 26	$207 \mathrm{~Pb} / 206 \mathrm{~Pb}$	$208 \mathrm{~Pb} / 232 \mathrm{Th}$	$206 \mathrm{~Pb} / 238 \mathrm{U}$	$87 \mathrm{Rb} / 86 \mathrm{Sr}$
Average	4,953	9,685	6,472	1,221
Maximum	5,162	23,132	14,131	1,232
Minimum	4,408	4,854	3,443	1,207

Isotopic and Trace Element Geochemistry

These rock samples from the Bangladesh border North east India (West Bengal, north of Kolkata) were dated in 2013 by scientist from the University of Rochester, New York using the Neodymium, Strontium, Lead age dating methods. ${ }^{70}$ The true age of the rock formation is supposed to be 115 million years old. " $40 \mathrm{Ar} / 39 \mathrm{Ar}$ data in basalts from these drillings suggest ages of 117 Ma . More recent $40 \mathrm{Ar} / 39 \mathrm{Ar}$ results from the Rajmahal hills and the Sylhet basalts are consistent with an 118 Ma age." ${ }^{71}$ "This complex gives a $\mathrm{Pb}-\mathrm{Pb}$ age of $134 \pm 20 \mathrm{Ma}$ and a more precise $\mathrm{U}-\mathrm{Pb}$ perovskite age of $115 \pm 5.1 \mathrm{Ma}{ }^{72}{ }^{72}$ The article contains a table ${ }^{73}$ that has four hundred and fifty seven ratios that have no dates beside them. Out of the 457 dates we calculated from these ratios there is a total disagreement with the so called 'true age.' Whichever date you choose for each meteorite as the true one is just a random guess.

Table 27	Average	Maximum	Minimum
$147 \mathrm{Sm} / 144 \mathrm{Nd}$	106	117	99
$\underline{87 \mathrm{Rb} / 86 \mathrm{Sr}}$	112	117	102
$207 \mathrm{~Pb} / 206 \mathrm{~Pb}$	5,041	5,055	5,009
$206 \mathrm{~Pb} / 238 \mathrm{U}$	9,888	10,609	8,839
$\underline{207 \mathrm{~Pb} / 235 \mathrm{U}}$	6,161	6,358	6,058
$208 \mathrm{~Pb} / 232 \mathrm{Th}$	15,680	20,320	14,313

Table 28	Average	Maximum	Minimum
$147 \mathrm{Sm} / 144 \mathrm{Nd}$	107	113	102
$\underline{87 \mathrm{Rb}} / 86 \mathrm{Sr}$	112	121	94
$\underline{207 \mathrm{~Pb} / 206 \mathrm{~Pb}}$	5,045	5,075	5,014
$206 \mathrm{~Pb} / 238 \mathrm{U}$	9,543	13,048	6,315
$207 \mathrm{~Pb} / 235 \mathrm{U}$	6,075	6,757	5,347
$208 \mathrm{~Pb} / 232 \mathrm{Th}$	18,054	28,756	11,610

$\underline{\text { Table 29 }}$	Average	Maximum	Minimum
$147 \mathrm{Sm} / 144 \mathrm{Nd}$	108	119	92
$\underline{87 \mathrm{Rb} / 86 \mathrm{Sr}}$	108	119	70
$207 \mathrm{~Pb} / 206 \mathrm{~Pb}$	5,039	5,053	5,017
$206 \mathrm{~Pb} / 238 \mathrm{U}$	10,844	17,441	6,877
$207 \mathrm{~Pb} / 235 \mathrm{U}$	6,343	7,468	5,495
$\underline{208 \mathrm{~Pb} / 232 \mathrm{Th}}$	12,287	17,286	9,074

Table 30	Average	Maximum	Minimum
$147 \mathrm{Sm} / 144 \mathrm{Nd}$	103	119	97
$\mathbf{8 7 \mathrm { Rb } / 8 6 \mathrm { Sr }}$	113	141	70
$207 \mathrm{~Pb} / 206 \mathrm{~Pb}$	4,917	5,059	4,717
$206 \mathrm{~Pb} / 238 \mathrm{U}$	5,634	20,655	733
$\underline{207 \mathrm{~Pb} / 235 \mathrm{U}}$	4,655	7,467	2,568
$\mathbf{2 0 8 P b} / 232 \mathrm{Th}$	7,077	21,557	318

Table 31	Average	Maximum	Minimum
$147 \mathrm{Sm} / 144 \mathrm{Nd}$	107	119	97
$\underline{87 \mathrm{Rb} / 86 \mathrm{Sr}}$	115	141	106
$207 \mathrm{~Pb} / 206 \mathrm{~Pb}$	4,952	5,060	4,912
$206 \mathrm{~Pb} / 238 \mathrm{U}$	7,600	19,375	1,996
$207 \mathrm{~Pb} / 235 \mathrm{U}$	5,376	7,470	3,777
$208 \mathrm{~Pb} / 232 \mathrm{Th}$	12,139	21,752	1,908

Table 32	Average	Maximum	Minimum
$147 \mathrm{Sm} / 144 \mathrm{Nd}$	172	901	82
$\underline{87 \mathrm{Rb} / 86 \mathrm{Sr}}$	111	141	70
$207 \mathrm{~Pb} / 206 \mathrm{~Pb}$	4,894	5,007	4,253
$206 \mathrm{~Pb} / 238 \mathrm{U}$	12,184	31,823	266
$207 \mathrm{~Pb} / 235 \mathrm{U}$	5,592	7,476	1,390
$208 \mathrm{~Pb} / 232 \mathrm{Th}$	18,102	61,342	261

Geochemistry of Hornblende Gabbros

These rock samples from Sonidzuoqi (Inner Mongolia, North China) were dated in 2008 by scientist from the Chinese Academy of Sciences, Beijing using the Potassium/Argon and Uranium/Lead age dating. ${ }^{74}$ The true age of the rock formation is supposed to be 500 million years old. "Limited hornblende $\mathrm{K}-\mathrm{Ar}$ and SHRIMP U-Pb zircon ages document the Late Silurian to Early Devonian gabbroic emplacement." ${ }^{74}$ "The Siluro-Devonian hornblende gabbros, together with a pre-490 Ma ophiolitic melange of MORB-OIB affinity, 483-471 Ma arc intrusions, $498-461 \mathrm{Ma}$ trondhjemite-tonalite-granodiorite plutons, and $427-423 \mathrm{Ma}$ calc-alkaline granites from the same area." ${ }^{74}$ The article contains a table ${ }^{75}$ that has twenty eight ratios that have no dates beside them. Out of the twenty eight dates we calculated from these ratios there is a total disagreement with the so called 'true age.' Whichever date you choose for each meteorite as the true one is just a random guess.

Table 33	207Pb/206Pb	206Pb/238U	207Pb/235U	208Pb/232Th
Average	5,011	6,612	5,422	22,967
Maximum	5,014	7,297	5,648	24,397
Minimum	5,007	5,922	5,237	20,621

Conclusion

Evolutionists Schmitz and Bowring claim that Uranium/Lead dating is 99\% accurate. 76 Looking at some of the dating it is obvious that precision is much lacking. The Bible believer who accepts the creation account literally has no problem with such unreliable dating methods. Much of the data used in this dating method is selectively taken to suit and ignores data to the contrary.

Yuri Amelin states in the journal Elements that radiometric dating is extremely accurate: "However, four 238U/235U-corrected CAI dates reported recently (Amelin et al. 2010; Connelly et al. 2012) show excellent agreement, with a total range for the ages of only 0.2 million years - from $4567.18 \pm 0.50 \mathrm{Ma}$ to 4567.38 ± 0.31

Modern Dating Methods

Ma." ${ }^{77-79}$ To come within 0.2 million years out of $4,567.18$ million years means an accuracy of 99.99562%. Looking at some of the dating it is obvious that precision is much lacking. The Bible believer who accepts the creation account literally has no problem with such unreliable dating methods. Much of the data in radiometric dating is selectively taken to suit and ignores data to the contrary.

Prominent evolutionist Brent Dalrymple states: "Several events in the formation of the Solar System can be dated with considerable precision." ${ }^{80}$ Looking at some of the dating it is obvious that precision is much lacking. He then goes on: "Biblical chronologies are historically important, but their credibility began to erode in the eighteenth and nineteenth centuries when it became apparent to some that it would be more profitable to seek a realistic age for the Earth through observation of nature than through a literal interpretation of parables." ${ }^{81}$ The Bible believer who accepts the creation account literally has no problem with such unreliable dating methods. Much of the data in Dalrymple's book is selectively taken to suit and ignores data to the contrary.

References

1 http://web.archive.org/web/20051223072700/http://pubs.usgs.gov/gip/geotime/age.html
The age of 10 to 15 billion years for the age of the Universe.

11 http://www.bgc.org/isoplot_etc/isoplot.html
12 Journal of Petrology, 2012, Volume 53, Number 7, Pages 1417-1448, Nazca Ridge and Easter Seamount Chain

13 Reference 12, page 1421
14 Reference 12, page 1428
15 Journal of Petrology, 2010, Volume 51, Number 9, Pages 1849, South African Off-Craton Mantle

16 Reference 15, page 1869-1870
17 Proceedings of the Ocean Drilling Program, Volume 158, Page 91, Os And Re Distribution In The Active Mound
http://www-odp.tamu.edu/publications/158_SR/VOLUME/CHAP 07.PDF

Modern Dating Methods

Reference 17, page 95
Principles of Isotope Geology, Second Edition, By Gunter Faure, Published By John Wiley And Sons, New York, 1986, Page 269

Introduction to Geochemistry: Principles and Applications, Page 241
By Kula C. Misra, Wiley-Blackwell Publishers, 2012
http://books.google.com.au/books?id=ukOpssF7zrIC\&printsec=frontcover
Radioactive and Stable Isotope Geology, Issue 3
By H. G. Attendorn, Robert Bowen, Page 298
Chapman and Hall Publishers, London, 1997
http://books.google.com.au/books?id=-bzb_XU7OdAC\&printsec=frontcover
http://www.geo.cornell.edu/geology/classes/Geo656/656notes03/656\ 03Lecture11.pdf
Proceedings of the Ocean Drilling Program, Volume 159, Page 181,
Osmium-Isotope Geochemistry Of Site 959
http://www-odp.tamu.edu/publications/159_SR/CHAPTERS/CHAP_18.PDF
Reference 23, page 183
Journal Of Petrology, 2004, Volume 45, Number 2, Pages 415,
The Seve Nappe Complex of Jamtland
Reference 25, page 432
Journal Of Petrology, 2005, Volume 46 Number 10 Pages 2059, 2078, 2079
The Kaalvallei Kimberlite, South Africa
Reference 27, page 2081
Journal Of Petrology, 2001, Volume 42 Number 6 Pages 1197-1218, Genesis of Continental Intraplate Basalts

Reference 29, page 1214
Reference 29, page 1204
Journal Of Petrology, 2006, Volume 47, Number 5, Pages 929
Xenoliths from the Colorado Plateau
Reference 32, page 931
Reference 32, page 930
Reference 32, page 953
Reference 32, page 953, 955, 956
Science in China Series D: Earth Sciences, 2007, Volume 50, Number 7, Pages 972-983, Indosinian granitoids

Reference 37, page 973
Reference 37, page 974
Reference 37, page 978

Journal Of Petrology, 2005, Volume 46, Number 10, Pages 2091-2128, The Stonyford Volcanic Complex

Reference 41, Page 2091
Reference 41, Page 2096
Reference 41, Page 2116
Journal Of Petrology, 2003, Volume 44, Number 10, Pages 1833-1865, Cenozoic Volcanism in Tibet

Reference 45, page 1833

Reference 45, page 1841, 1842
Reference 45, page 1847, 1848
http://www.lpi.usra.edu/meetings/lpsc2011/pdf/1243.pdf
U-Th-Pb Analysis Of Baddeleyites

Periodico Di Mineralogia (2007), Volume 76, Pages 5, $\mathbf{R b}-\mathrm{Sr}$ and $\mathrm{Pb}-\mathrm{Pb}$ Geochronology

Reference 50, pages 10-11
Earth and Planetary Science Letters, Volume 319-320 (2012), Pages 197-206, $\mathbf{U}-\mathbf{T h}-\mathbf{P b}$ Isotope Data

Reference 52, page 197
Reference 52, page 201
Reference 52, page 199
ftp://rock.geosociety.org/pub/reposit/2013/2013089.pdf, GSA Data Repository, The Geological Society of America Publication, 2013 http://rock.geosociety.org/

Reference 56, page 2
Reference 56, page 4-14

Doklady Earth Sciences, 2002, Volume 387A, Number 9, Pages 1083, 1084, Lead in Galena from Ore Deposits

Reference 59, page 1086
Reference 59, page 1085

Earth and Planetary Science Letters, Volume 174, (2000) Pages 247, 251, The Caribbean Large Igneous Province

Reference 62, page 247
Reference 62, page 248
Reference 62, page 253

80 The Age Of The Earth, By G. Brent Dalrymple, 1991, Stanford University Press, Stanford, California, Page 10.

81
Chemical Geology, Volume 236, 2007, Pages 291-302, $\mathrm{Nd}-\mathrm{Hf}-\mathrm{Sr}-\mathrm{Pb}$ isotopes

Reference 66, page 291
Reference 66, page 297
Reference 66, page 297

Geochimica et Cosmochimica Acta, 2013, Volume 115, Pages 46-72, Isotopic and trace element geochemistry

Reference 70, page 48
Reference 70, page 50
Reference 70, page 62-66
International Geology Review, 2009, Volume 51, Number 4, Pages 345, Geochemistry of hornblende gabbros

Reference 74, page 361
Schmitz MD, Bowring SA. An assessment of high-precision U-Pb geochronology. Geochimica et Cosmochimica Acta, 2001, Volume 65, Pages 2571-2587

Dating the Oldest Rocks in the Solar System, Elements, 2013, Volume 9, Pages 39-44
Amelin, Earth and Planetary Science Letters, 2010, Volume 300, Pages 343-350
Connelly, Science, 2012, Volume 338, Pages 651-655

Reference 80, Page 23

www.creation.com

